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Modules
1. An easy introduction to the shared wireless medium 
2. Random Access: How to Talk in Crowded Dark Room
3. Access Beyond the Collision Model
4. The Networking Cake: Layering and Slicing
5. Packets Under the Looking Glass: Symbols and Noise
6. A Mathematical View on a Communication Channel
7. Coding for Reliable Communication
8. Information-Theoretic View on Wireless Channel Capacity
9. Time and frequency in wireless communications
10. Space in wireless communications 
11. Using Two, More, or a Massive Number of Antennas
12. Wireless Beyond a Link: Connections and Networks
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Channel capacity

• We cannot do anything about reliability 
if the channel is used only once

• If the channel is used many times, then we can start 
to see statistical regularity

• Channel capacity is defined for 
asymptotically many uses of the channel
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What will be learned in this chapter

• Why is the law of large numbers important to define channel capacity

• Typical sequences, perfectly reliable communication and channel capacity

• Mutual information

• The popular Shannon formula for a Gaussian channel

• Fading channels and capacity
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Perfect reliability with nontrivial data rate

True reliability may trick us to add redundancy indefinitely (bringing the rate to 0)
Fortunately, this is not the case
§ Fundamental result of information-theory: while, indeed, packet length needs 

to go to infinity, the amount of data increases at the same rate, 
while reliability approaches to a perfect one (zero probability of error)!

§ The number of codewords 𝑀 that can be selected grows as
𝑀 = 2!"

with channel uses 𝑙 and data rate per channel use 𝐶 = #$%! &
!

> 0

The highest possible value for 𝐶 is the channel capacity
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The role of the law of large numbers

Simple illustration: Random bit generator producing 1 with 𝑝 and 0 with 1 − 𝑝
Create a sequence of 𝑙 i.i.d. random numbers
When the sequence is long, we expect to see 𝑙𝑝 1’s and 𝑙 1 − 𝑝 0'𝑠
§ This is called a typical sequence
§ Occurs with probability 𝑃( = 𝑝!) 1 − 𝑝 ! *+)

§ In terms of its entropy 𝑃( = 2#$%! )"# *+) " $%# = 2+!, )

§ As 𝑙 → ∞ we will almost surely observe one of them so
𝐿!×𝑃! ≈ 1 ⇒ 𝐿! ≈

"
#!
= 2$% &

The law of large numbers (LLN) turns a local property into a global property
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A digression into source coding

Bit vs. binary value
How many bits of information are required, on average, 
to represent the binary sequence produced by a 
random generator for which the probability of getting 1 is p?

The probability for a sequence to be typical is <1:

𝐿(𝑃( = 1 − 𝑃- 𝐿( ≤ 2!(, ) /0)

Encoding a typical sequence requires: 𝐷( = log2 𝐿( bits
Send typical compressed, send non-typical uncoded 
and add one bit to each to discriminate
5𝐷 = 1 − 𝑃- 1 + 𝐷( + 𝑃- 𝑙 + 1 = 1 + 1 − 𝑃- 𝑙 𝐻 𝑝 + 𝜀 + 1 + 𝑃-𝑙
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Perfectly reliable communication

Consider a BSC with per-symbol error probability 𝑝 > 0

Received signal: 𝑦! = 𝑥!⊕𝑣! where 𝑣! is one of 𝐿( ≈ 2!, ) typical noise vectors
For a given input 𝑥!, there will be a cloud of 𝐿( typical outputs 𝑦! (gray area)

§ At most 𝑀 = 2"

2"& # = 2! *+, ) non-overlapping codewords

§ Can represent log2𝑀 bits, so the maximal rate is

𝑅 =
log2𝑀
𝑙 = 1 − 𝐻 𝑝

Can we select 𝑀 codewords such that 
even errors (typical ones) do not introduce ambiguity?

§ YES! How? Well…
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The quest for the perfectly reliable code

Shannon’s result does not provide a recipe for creating an optimal codebook:
It proves that it exists using a probabilistic argument
§ Generate codewords one-by-one through coin flipping 
§ Then, gather them into codebooks 𝑥*! , … 𝑥&!

§ The error of the codebook is characterized by the overlap between codewords
§ This error tends to 0 as 𝑙 goes to infinity

Such a codebook is just one of all possible codebooks, but…
By generating it this way it is an average codebook
§ Then, there must exist at least one that is “better”
The maximal rate for which an arbitrarily low error probability can be guaranteed is 
known as channel capacity... For BSC: 𝐶 = 1 − 𝐻 𝑝
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Mutual information 
and its interpretations
Statistical properties of the single channel use reflect the channel capacity 
This is the local property of the underlying channel
§ Define a set of 𝐾 possible inputs 𝑥 ∈ 𝑎*, … 𝑎5

and a set of 𝐿 possible outputs 𝑦 ∈ 𝑏*, … , 𝑏6
§ For a given 𝑥 = 𝑎7 the output is a random variable 𝑌

characterized by the conditional distribution 𝑃 𝑦|𝑎* and entropy

𝐻 𝑌|𝑥 = 𝑎" =.
'("

)

𝑃 𝑏'|𝑎" log*
1

𝑃 𝑏'|𝑎"
§ The input is a random variable itself (having distribution 𝑃 𝑥 )
§ Then what is relevant is the average uncertainty (entropy) of 𝑌 given 𝑋

𝐻 𝑌|𝑋 =.
+("

,

𝑃 𝑎+ 𝐻 𝑌|𝑋 = 𝑎+
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Mutual information 
and its interpretations

Furthermore, given 𝑃 𝑦|𝑥 and 𝑃 𝑥 we can determine the marginal

𝑃 𝑌 = 𝑏8 =H
79*

5

𝑃 𝑎7 𝑃 𝑌 = 𝑏8|𝑋 = 𝑎7

which is necessary to calculate 𝐻 𝑌

The difference between this marginal and conditional entropy is known as 
mutual information

𝐼 𝑋; 𝑌 = 𝐻 𝑌 − 𝐻 𝑌|𝑋
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Mutual information 
and its interpretations
In words:
We are given a channel 𝑃 𝑌|𝑋 that cannot change
We can decide on 𝑃 𝑋 (the only thing we control directly)
§ Clearly, 𝑃 𝑋 and 𝑃 𝑌|X determine 𝑃 𝑌
§ 𝑃(𝑌) is the only thing that we can observe directly so it is important that it 

provides as much information as possible about 𝑋 (which we are really after)
Mutual information:
Information that a RV provides about another one 
Hence, the goal is to find 𝑃 𝑋 that maximizes 𝐼 𝑋; 𝑌

sup
: ;

𝐼 𝑋; 𝑌 = 𝐶

For BSC, mutual information is maximized when 𝑃 𝑥 = *
2
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Mutual information in 
some practical communication setups
The codebook created by a fair coin toss is not always the right solution:
Consider a Z-channel where Xia transmits 0 by staying silent (high reliability) and 1 
by transmitting 1’s
§ Clearly, Xia should transmit 0 more often
§ The input distribution that achieves the capacity of the Z-channel is

𝑃 𝑋 = 0 = 1 −
1

1 − 𝑝 1 − 2
,())
*+)

The codewords should exhibit similar statistics in terms of their content (0’s and 1’s)
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Mutual information in 
some practical communication setups

Broadcast channel with cooperation:
𝐼 𝐵; 𝑍𝑊 = 𝐼 𝐵;𝑊 + 𝐼(𝐵; 𝑍|𝑊)
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Figure 8.4 Two wireless
communication setups for
interpretation of mutual
information. (a) Broadcast from
Basil to Zoya and Walt. Zoya uses a
perfect wire to send her observation
Z to Walt. (b) Multi-hop
communication between Xia and
Yoshi through Zoya.

of Z to Walt. This enables Walt to observe both random variables Z and W , such that the
mutual information transferred from Basil to Walt is written I(B;ZW). One can think of Z
and W as being single, composite random variables. The following holds:

I(B;ZW) = I(B;W) + I(B;Z|W) (8.20)

where I(B;Z|W) is the mutual information between Basil and Zoya, assuming that they
both know what Walt has received. The interpretation is that the total information is what
Basil can send to Walt plus what Zoya can see about Basil in addition to what Walt has seen.

Another important intuitive interpretation is associated with the data processing inequal-
ity, which can be directly related to layering and creation of communication channels,
discussed in the previous chapters. To put forward the main idea, consider the multi-hop
setup in Figure 8.4(b), Xia is able to communicate with Yoshi only through Zoya as an inter-
mediate node. In other words, think of a multi-hop communication in which Xia provides
a message to Zoya and Zoya provides the message to Yoshi. The data processing inequality
states that Yoshi cannot learn more about Xia’s message than what Zoya can learn about
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Figure 8.5 Illustration of data processing inequality for a layered communication system between
Xia and Yoshi. (a) Two-layered protocol with a high layer (HL) and a low layer (LL). (b) Markov
chain that represents the inputs/outputs of the layered channels.

Xia’s message. This is because everything that Yoshi can know about Xia’s message has to
come through Zoya. To state this more formally, use X as the random variable that denotes
the input symbol sent by Xia, Z as the output symbol in the channel Xia–Zoya and simulta-
neously an input symbol for the channel Zoya–Yoshi and, !nally, Y is the random variable
of the output symbol observed by Yoshi. Then the mutual information satis!es:

I(X;Y ) ≤ I(X;Z) (8.21)

and similarly I(X;Y ) ≤ I(Z;Y ). The mathematical reason for this is that the random vari-
ables X and Y are conditionally independent given Z, which is expressed as

P(Y = y|Z = z,X = x) = P(Y = y|Z = z) (8.22)

and X–Z–Y form a Markov chain.
Figure 8.5 can be used to establish the relationship between the data processing inequal-

ity and layered communication channels. Figure 8.5(a) shows a two-layer communication
system between Xia and Yoshi with a higher layer (HL) and a lower layer (LL). The HL chan-
nel XH–YH is created by using the LL channel XL–YL. For example, XL–YL can be an analog
channel (we will discuss mutual information for analog channels in the next section), while
XH–YH is a digital channel. Here the data processing inequality can be expressed as:

I(XH;YH) ≤ I(XL;YL) (8.23)

that is, the information transferred at a higher layer between Xia and Yoshi cannot be higher
than the information transferred throughout the lower layer. This is because the HL sender
has no other way of reaching the HL receiver except through the LL channel. To extend
the analogy with layered protocols, we can say that the ultimate objective of cross-layer
optimization is to have equality in (8.23).

Layering and data processing inequality:
𝐼 𝑋,; 𝑌, ≤ 𝐼 𝑋6; 𝑌6



The Gaussian channel and 
differential entropy
The classical definition of entropy is not directly applicable when
the random variables for communication are drawn from continuous distribution
For continuous RVs characterized by pdf 𝑓 𝑥 we talk about differential entropy

ℎ 𝑋 = −∫ 𝑓 𝑥 log* 𝑓 𝑥 d𝑥
Knowledge of 𝑓 𝑥 and 𝑓 𝑦|𝑥 allows to determine 𝑓 𝑦 and 𝑓 𝑥|𝑦
This, in turn, is used to obtain a conditional differential entropy ℎ 𝑋|𝑌
Mutual information in continuous RVs

𝐼 𝑋; 𝑌 = ℎ 𝑋 − ℎ 𝑋|𝑌
For continuous RVs it is possible to have ℎ 𝑋 < 0, but less intuitive than in the 
discrete case. 
Worst case for noise: Entropy is the highest for Gaussian distribution
among the RVs with fixed variance 𝐸 𝑋 2 = 𝜎2

ℎ 𝑋0 =
1
2
log* 2𝜋𝑒𝜎*
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The capacity of the Gaussian 
channel and the “Shannon formula”
What is the optimal input distribution?

The signal power is typically limited to 𝑃 and is related to the variance of the signal
§ When 𝐸 𝑋 2 is constrained, the highest entropy is observed for Gaussian RV, 

hence, ideally 𝑋 ∼ 𝒩 0, 𝑃
§ When the noise is Gaussian with power 𝑁 = 𝜎2: 

The observed 𝑌 is another Gaussian RV with statistics 𝒩 0,𝑃 + 𝑁
The maximal mutual information and, hence, channel capacity is

𝐶 =
1
2
log* 1 +

𝑃
𝑁

=
1
2
log* 1 + 𝛾

To achieve twice that capacity, real and complex channels can be superimposed: 
Recall the discussion about QPSK/BPSK

16Wireless Connectivity: An Intuitive and Fundamental Guide  
Chapter 8: Information-Theoretic View on Wireless Channel Capacity



Achieving the Gaussian channel 
capacity
How to create codewords that will achieve the capacity?
Generate random codewords but this time following Gaussian distribution 𝒩 0,𝑃
(instead of fair 50/50 coin)
As the length of a codeword 𝑙 → ∞, LLN guarantees that the average power

*
!
∑89*! 𝑥7,8

2 = 𝑃 (observe the notation 𝑥7! = 𝑥7,*𝑥7,2…𝑥7,! )
Codeword 𝑥7!, with its associated typical noise cloud, has an 𝑙-dimensional volume

𝑉= ≈ 2!> = = 2𝜋𝑒𝑙𝜎2
*
2 = 2𝜋e𝑙𝑁

*
2

Since 𝑌 ∼ 𝒩 0, 𝑃 + 𝑁 due to uncertainty, the total volume of 𝑌 is
𝑉? ≈ 2!> ? = 2𝜋𝑒𝑙 𝑃 + 𝑁

*/2

The maximum number of non-overlapping codewords is 𝑀 = A'
A(

and

log2𝑀
𝑙 =

𝑙
2 log2

𝑃 + 𝑁
𝑁

𝑙 =
1
2 log2 1 + 𝛾
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Interpretations of the 
“Shannon formula”
The capacity formula 𝐶 = *

2
log2 1 + 𝛾 is often misused

Example: Gaussian channel 𝑦 = ℎ𝑥 + 𝑛 with SNR 𝛾 = > !B
C

To achieve capacity we need to send many symbols e.g. 𝑙 = 10000
If ℎ is constant, Xia can learn it and adapt the transmission to achieve the capacity
Else if ℎ changes e.g. every 50 channel uses, then we could be tempted to write that 
the number of information bits is 50∑79*2DD𝐶 𝛾7
But the formulas are valid only due to LLN, which is not fulfilled here!
One could consider average SNR instead of individual 𝛾’s…

But it doesn’t account for resources spent on learning ℎ
If practical constellations are used (e.g. 16-QAM) 
then they should be adapted per each symbol
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Capacity of fading channels
We will focus on channels of the type 𝑦 = ℎ𝑥 + 𝑛
and consider different behaviors of ℎ
We distinguish two main types of fading
1. S l o w f a d i n g occurs when ℎ, while random, stays constant for infinite or 

practically infinite number of channel uses
If ℎ is known, transmission can occur at capacity 

2. Fast fading occurs when ℎ changes, well, fast. Example: every 𝐿 channel uses
§ Most extreme case: 𝐿 = 1 and each symbol experience different fading
§ The time 𝐿 during which channel stays constant is called coherence time

Regardless of 𝐿 being finite or not, we can consider a communication over
infinitely many periods 𝑉 such that there are in total 𝑉𝐿 channel uses
Rule: we assume receiver knows ℎ perfectly
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Capacity with available CSI
We mean channel state information (CSI) available at the transmitter

Slow fading
Simplest case where Xia can transmit at a rate 𝐶 = log2(1 +

> !B
C
)

If transmissions occur over 𝑉 blocks and Xia uses constant power, 
the average rate is

𝑅# =
1
𝑉
.
1("

2

𝐶
ℎ1 *𝑃
𝑁

=
1
𝑉
.
1("

2

𝐶 𝛾1

Since ℎE is a random variable, we can talk about the distribution of the SNR
Rayleigh fading is commonly considered
Both real and imaginary parts of ℎ are uncorrelated Gaussian RVs
For a given 𝑃, the distribution of the SNR is exponential with mean 𝐺𝑃

𝑝 𝛾 =
1
𝑃𝐺

𝑒+
F
BG
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Capacity without available CSI
We start with slow fading 
There are 2 states: “good” and “bad” occurring with 𝑝G and 𝑝H = 1 − 𝑝G
§ During “good” states Xia can (successfully) transmit with rate 

𝑅G = 1 − 𝐻 𝑝
§ During “bad” states no information is conveyed: 

So, capacity is 0, right?
well…,the average throughput is still positive:

𝑇 = 𝑝) 1 − 𝐻 𝑝

Outage probability is 1 − 𝑝G
To combat this, Yoshi can employ feedback

21
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Capacity without available CSI
Fast fading with 𝐿 = 1: The situation changes significantly 
The scenario is characterized by probabilities 𝑝78
If neither Xia nor Yoshi have CSI: 
§ Xia generates the codewords for the binary channel defined by these probabilities

§ With 𝑝G = 0.9 and 𝑝 = 0.01, the capacity is 0.7104 bits per channel use
§ Observe: 0 is more reliable it is expected to be used more often

Else if Yoshi knows CSI, he can distinguish between different “0s”
§ The capacity increases 𝐶 = 1 − 𝐻(𝑝 ) 𝑝G = 0.8273
§ This is equal to the slow fading case with feedback

In fast fading, Xia can achieve positive rate due the law of large numbers
The channel visits all states during the 𝑙 channel uses of the codeword
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Channel estimation and knowledge
Costly, but oftentimes beneficial
Accurate ℎ is required for the fading channel for Maximum Ratio Combining (MRC)
Knowledge of is ℎ needed in AWGN for rate selection
Communication phases of a protocol:
1. Estimation with 𝑣 pilot symbols lℎE = ℎ +𝑤E

More pilots = smaller variance of noise estimation
2. Reporting with 𝑟 symbols

SNR is not exactly reported – but quantized in 𝐾 bits
It indicates one of 𝑅*, … , 𝑅5 possible coding rates

3. Data communication with rate adaptation
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Channel estimation and knowledge
How large should 𝑣 be?

𝑦E = lℎE∗𝑦 = ℎ∗ +𝑤E∗ ℎ𝑥 + 𝑧 = ℎ 2𝑥 + 𝑛EJ, 
Note: 𝑛EJ is not exactly Gaussian, but can be assumed to be…

If one is conservative when selecting the rate
Effective data rate: 

𝐺K =
𝑙

𝑣 + 𝑟 + 𝑙 𝑅K
Average long term goodput:

𝐺̅ =
𝑙

𝑣 + 𝑟 + 𝑙
H
K9*

5

𝑃K𝑅K ,

where 𝑃K is the probability that the 𝑘-th state occurs

24Wireless Connectivity: An Intuitive and Fundamental Guide   
Chapter 8: Information-Theoretic View on Wireless Channel Capacity



Outlook and takeaways
• Law of Large Numbers is essential

§ It leads to typical behavior

• “Optimal” might be hard to find, but random can be pretty good

• Significance of mutual information

• Communication over slow and fast fading is fundamentally different
… and as usual, who knows what really matters
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