Wireless Connectivity: An Intuitive and Fundamental Guide

Chapter 7: Coding for Reliable Communication

Petar Popovski Connectivity Section Department of Electronic Systems petarp@es.aau.dk

Contributions to the slides: Israel Leyva-Mayorga Radoslaw Kotaba Abolfazl Amiri Alexandru-Sabin Bana Robin J. WIlliams

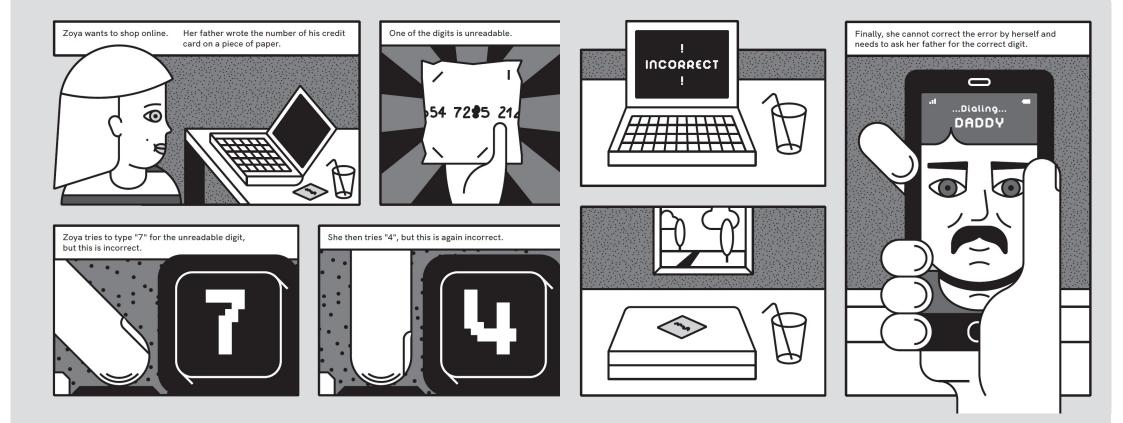
AALBORG UNIVERSITY DENMARK

Modules

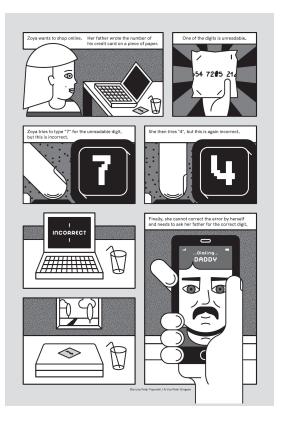
- 1. An easy introduction to the shared wireless medium
- 2. Random Access: How to Talk in Crowded Dark Room
- 3. Access Beyond the Collision Model
- 4. The Networking Cake: Layering and Slicing
- 5. Packets Under the Looking Glass: Symbols and Noise
- 6. A Mathematical View on a Communication Channel

7. Coding for Reliable Communication

- 8. Information-Theoretic View on Wireless Channel Capacity
- 9. Time and frequency in wireless communications
- 10. Space in wireless communications
- 11. Using Two, More, or a Massive Number of Antennas
- 12. Wireless Beyond a Link: Connections and Networks



Importance of coding for reliable communication



- Allowing every input sequence to be a valid message would make communication unreliable
- Coding is one of the foundations of communication: it allows to detect or correct errors
- Communication can be further improved by employing feedback and retransmissions

What will be learned in this chapter

- Basic coding ideas
- Detection and correction through coding
- Combining coding and modulation
- Role of feedback and retransmissions

Communication over unreliable channels

How to achieve reliable communication with unreliable individual channel uses

- Use of packets containing multiple symbols
- Including redundancy for error detection and correction

Assume: ideal error check

The goodput is affected by the total probability of error and the length of the overhead

$$G = \frac{b}{b+c}(1-p)^{b+c}$$

Coding and Binary Symmetric Channel (BSC)

Simplest form:

repetition coding

Each bit is sent 3 times $y_1y_2y_3 \in \{000,001,010,011,100,101,110,111\}$

Majority voting $p_E = 3p^2(1-p) + p^3$

Cost of longer symbol time (triple symbol time of r-channel)

$$G_p = \frac{b}{l}(1-p)^l$$
; $G_r = \frac{b}{3l}(1-p_E)^l$ $G_r = G\frac{1}{3}\left(\frac{1-p_E}{1-p}\right)^l$

(a)

Wireless Connectivity: An Intuitive and Fundamental Guide Chapter 7: Coding for Reliable Communication 000

(b)

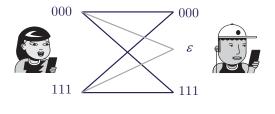
Coding and Binary Symmetric Channel (BSC)

Goodput is increased if $\frac{1}{3} \left(\frac{1-p_E}{1-p} \right)^l > 1$

- This is not always the case
- In fact, repetition coding is rather inefficient, unless p is high
 - E.g. for l = 300, p = 0.495 we have $G_r = 1.15G$

Repetition coding with erasures

 $p_{S} = (1 - p)^{3}$ $p_{E} = p^{3}$ $p_{ERS} = 3p(1 - p)^{2} + 3p^{2}(1 - p) = 3p(1 - p)$



(c)

Assume: *p* is low \rightarrow then p_E and p_{ERS} are also low

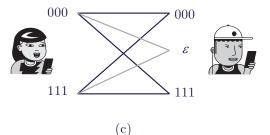
- Furthermore, let $p_{ERS} \sim \frac{1}{l}$, s.t. small number of erasures can happen
- We can use the error detection capabilities to recover the packet!
 - Further assumption: CRC is ideal

$$G_{\epsilon} \approx \frac{b}{3l} (1-p^3)^l = G \frac{1}{3} \left(\frac{1-p^3}{1-p} \right)^l$$

Repetition coding with erasures

Some caveats

 To recover the packet despite the erasures we had to test different hypotheses i.e. "The erased bit was 0" and "The erased bit was "1"



- The error correction is possible also with p-channel, but more cumbersome
- If the number of erasures is n we might have to test all 2^n cases
- Furthermore, error detection in practice is not ideal
 - A specific combination of error flips may lead to another valid packet

Can we do even better (while still using 3 BSC channel uses per bit)?

Coding beyond repetition

Repetition coding restricts to **2 out of 8 possible** 3-BSC symbols How about if we choose **4 out of 8** symbols

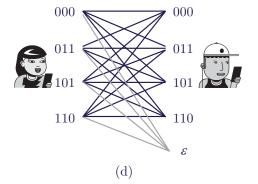
Nominal goodput $\frac{b}{\frac{3l}{2}} = \frac{2}{3}\frac{b}{l}$

Which 4 new symbols? ones with **maximum separation** (Hamming distance)

$$p_{S} = (1-p)^{3}$$
; $p_{E} = 3p^{2}(1-p)$; $p_{ERS} = 3p(1-p)^{2} + p^{3}$
 $G_{c} = \frac{2}{3}\frac{b}{l}(1-p_{E})^{\frac{l}{2}}$

Packet duration: $\frac{3l}{2} > l$ i.e. there is still some redundancy

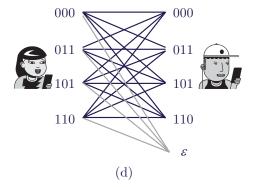
Coding objective: minimize redundancy, while still meeting target error



Coding beyond repetition

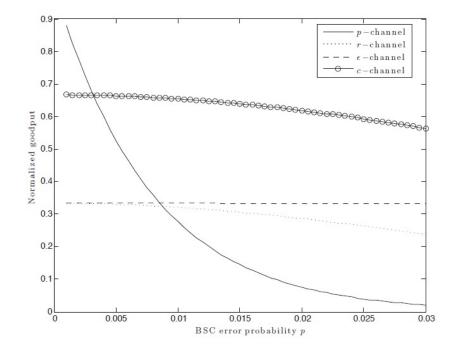
If $G_c = \frac{2}{3} \frac{b}{l} (1 - p_E)^{\frac{l}{2}}$ holds, then we can show that it strictly outperforms simple p-channel

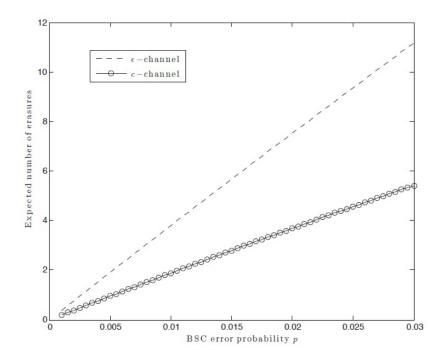
$$\begin{aligned} G_r &= \frac{b}{3l} (1 - 3p^2 (1 - p) - p^3)^l < \frac{b}{3l} (1 - 3p^2 (1 - p))^l \\ &= \frac{b}{3l} (1 - 3p^2 (1 - p))^{\frac{l}{2}} \cdot \frac{b}{3l} (1 - 3p^2 (1 - p))^{\frac{l}{2}} \\ &< \frac{b}{3l} (1 - 3p^2 (1 - p))^{\frac{l}{2}} < G_c \end{aligned}$$



Illustrative comparison of BSC channels

l = 128 bits

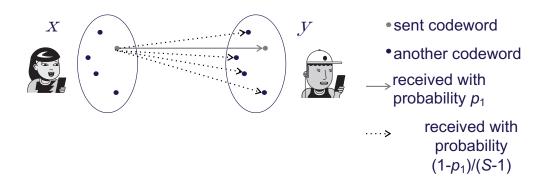




Wireless Connectivity: An Intuitive and Fundamental Guide Chapter 7: Coding for Reliable Communication

Generalization of the coding idea

Unreliable single channel use



Uncoded transmission: map log₂ S bits into S symbols
resulting in l log₂ S bits over l channel uses

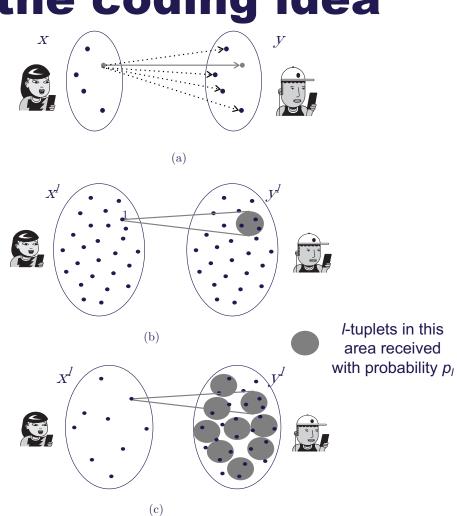
Generalization of the coding idea

Unreliable single channel use

Group multiple uses to create an expanded channel version

Select subset of symbols representing codewords

Inherent tension: **nominal data rate** vs. **reliability** $R = \frac{\log_2 M}{l}$ redundancy: $l - \log_S M$



Maximum likelihood (ML) decoding

Decision rule = valid codeword belonging to the **shaded** area

 $P(\mathbf{x}_i | \mathbf{y}) = \frac{P(\mathbf{y} | \mathbf{x}_i) \cdot P(\mathbf{x}_i)}{P(\mathbf{y})} = \frac{P(\mathbf{y} | \mathbf{x}_i)}{P(\mathbf{y})} \frac{1}{M}$

In memoryless channel: $P(\mathbf{y}|\mathbf{x}_i) = \prod_{j=1}^{l} P(y_j|x_{ij})$

• Equivalently, $\log P(\mathbf{y}|\mathbf{x}_i) = \sum_{j=1}^{l} P(y_j|x_{ij})$

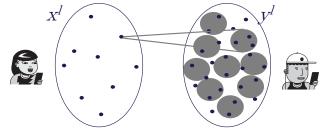
Smaller Hamming distance $(y, x) \rightarrow$ higher log-likelihood

This is related to noise clouds

Pick x that leads to max of the possible likelihoods

• $M \times S^{l}$ likelihoods to compute

Main objective: find sufficiently separated codewords while keeping reasonable decoding complexity

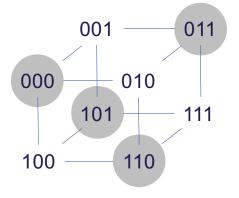


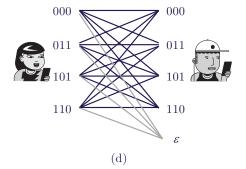
Linear block codes for the BSC

Block code: *b* bits supplied as a **message** $\mathbf{d} = (d_1, ..., d_b)$ Each **message** is associated a **codeword** $\mathbf{x} = (x_1, ..., x_l)$ l > b and both d_i and x_i assumed binary

We call this an (l, b)-code with rate $R = \frac{b}{l}$ [bit/c.u.] and corresponds to *c*-channel with 2^{*b*} inputs and 2^{*l*} outputs

message \mathbf{d}	codeword \mathbf{x}
00	000
01	011
10	101
11	110





Wireless Connectivity: An Intuitive and Fundamental Guide Chapter 7: Coding for Reliable Communication

17

Linear block codes for the BSC

The code provided as example belongs to the class of *linear block codes*, where linearity is wrt. addition and multiplication of binary numbers, i.e., within the GF(2)

Encoding has particularly simple interpretation

 $\mathbf{x} = \mathbf{d} \cdot \mathbf{G}$

Where $G = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ is the Generator matrix

In a good code **one bit** should influence **several symbols**, and **one symbol** should be influenced by **several bits**

Wireless Connectivity: An Intuitive and Fundamental Guide Chapter 7: Coding for Reliable Communication $\begin{array}{c}
000\\
011\\
011\\
101\\
101\\
110\\
\varepsilon\\
(d)
\end{array}$

codeword \mathbf{x}
000
011
101
110

Properties of linear block codes

Linearity: sum of codewords also a codeword Hamming distance spectrum = histogram of distances Minimal distances and multiplicity of minimal distances

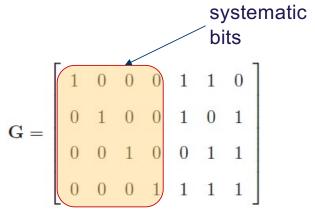
• For linear codes, the Hamming distance spectrum for each codeword is identical

A good example, (7,4) Hamming code, given by:

With *G* there is associated a parity check matrix *H*: $\mathbf{x} \cdot \mathbf{H}^T = \mathbf{0}$

Compute syndrome $\mathbf{s} = \mathbf{y} \cdot \mathbf{H}^T = (\mathbf{x} \oplus \mathbf{e}) \cdot \mathbf{H}^T = \mathbf{e} \cdot \mathbf{H}^T$

- Can correct one-bit errors
 - However, the code cannot distinguish between single and multi-bit errors

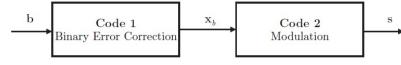


Coded modulation as a layered subsystem

Shift to Gaussian channel → Analog coding (symbols are not binary anymore) Analog coding = error control + modulation

A layered approach:

- A message $\mathbf{d} = (d_1, \dots, d_b)$ is mapped to a binary codeword $\mathbf{x}_d = (x_{d_1}, x_{d_2}, \dots, x_{d_l})^{1}$ (introducing redundancy as b > l)
- It is then mapped to a complex codeword $s = (s_1, s_2, ..., s_u)$, where s_i come from a set of M predefined complex values
 - Generally $M = 2^m$, then $l = m \cdot u$



This can be viewed as a concatenation of codes

Many configurations possible

BPSK, rate-½ FEC + QPSK, rate-¼ FEC + 16QAM → all result in 1 bit/symb

Wireless Connectivity: An Intuitive and Fundamental Guide Chapter 7: Coding for Reliable Communication Im 4

00

•01

Re

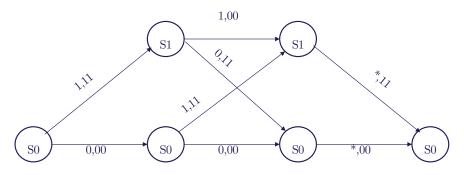
10

Coded modulation as a layered subsystem

What if coding and modulation are not separated, but rather done jointly?

Trellis coded modulation

message \mathbf{d}	codeword \mathbf{x}_d
00	000000
01	001111
10	111100
11	110011



Decoding the Trellis modulated signal can be done with **Viterbi** decoder, which implements the maximum likelihood decoding

Coded modulation as a layered subsystem

Strength related to #states:

more outputs get affected by a specific input bit – *good code design*

Consider two bit sequences

$$d_1 = [c_1 \ 0001]$$

 $d_2 = [c_2 \ 0001]$

Using the system that separates coding and modulation would yield $d_1 \rightarrow [S_1 \ s_1 \ s_2]$ and $d_2 \rightarrow [S_2 \ s_1 \ s_2]$ respectively.

Meanwhile, with trellis encoding the resulting codewords are more likely to have a form $d_1 \rightarrow [T_1 s_1 s_2]$ and $d_2 \rightarrow [T_2 s_3 s_4]$

• Same bit sequence can be encoded differently depending on the state

Retransmission in addition to coding

What if FEC fails?

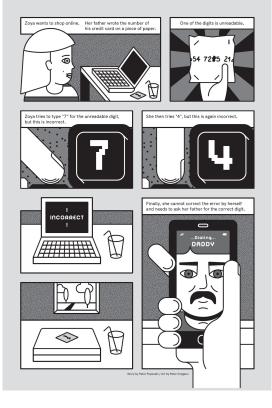
Decoded packet $\mathbf{d}_2 = \mathbf{d}_1 \oplus \mathbf{e}$

- Accidentally **d**₂ satisfies the CRC
 - A simple 1-bit ACK does not help; Base station would have to send whole d₂ back as very rich ACK

What if the error process produces e again?

• Received ACK is $\mathbf{d}_2 \oplus \mathbf{e} = \mathbf{d}_1 \oplus \mathbf{e} \oplus \mathbf{e} = \mathbf{d}_1$ satisfying error check

Impossible perfectly reliable transmission within limited time



Full packet retransmission

Assume ideal CRC again

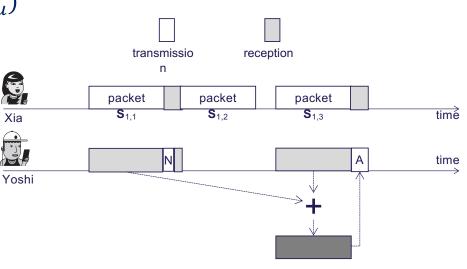
Then eventually, the packet is received correctly Hybrid ARQ (**HARQ**) with packet $\mathbf{s} = (s_1, s_2, ..., s_u)$

- Basic: previous packet versions are discarded
- More efficient: combine previous packet samples $y_{i,1} = hs_i + n_{i,1}$; $y_{i,2} = hs_i + n_{i,2}$

Chase combining (MRC):

$$y_{i} = y_{i,1} + y_{i,2}$$

= $2hs_{i} + n_{i,1} + n_{i,2} \rightarrow \frac{|2h|^{2}}{\sigma^{2} + \sigma^{2}} = \frac{2|h|^{2}}{\sigma^{2}} = 2 \cdot SNR$



Partial retransmission & incremental redundancy

Retransmitting smaller set of symbols

Yoshi signals with a rich feedback

How much redundancy is **further** required?

• Challenging how to signal this back

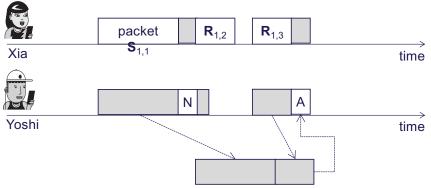
Simpler: retransmit systematic bits

- Yoshi may use the new ones, or use MRC on the retransmitted bits
- However, Xia needs to signal which bits were retransmitted

More practical: using linear codes and puncturing

- c = (c₁, c₂, c₃) sending one fragment at a time in case no ACK
- Could be coupled with adaptation of power

Recall AMC – incremental redundancy can act as a bridge between the "stairs"



Outlook and takeaways

- Using the channel multiple times allows us to construct another channel with more possible inputs and outputs
 - Restricting the subset of possible inputs is a source of redundancy, but allows to introduce error detecting and correcting capabilities
- Practical systems employ coding and modulation to enable reliable and efficient communication
 - Further gains can be achieved by adopting the cross-layer design
- Feedback and retransmissions are another set of "tools" to improve the communication reliability