Wireless Connectivity: An Intuitive and Fundamental Guide

Chapter 1: An Easy Introduction to the Shared Wireless Medium

Petar Popovski Connectivity Section Department of Electronic Systems petarp@es.aau.dk

Contributions to the slides: Israel Leyva-Mayorga Radoslaw Kotaba Abolfazl Amiri Alexandru-Sabin Bana Robin J. WIlliams

AALBORG UNIVERSITY DENMARK

Chapters

1. An Easy Introduction to the Shared Wireless Medium

- 2. Random Access: How to Talk in Crowded Dark Room
- 3. Access Beyond the Collision Model
- 4. The Networking Cake: Layering and Slicing
- 5. Packets Under the Looking Glass: Symbols and Noise
- 6. A Mathematical View on a Communication Channel
- 7. Coding for Reliable Communication
- 8. Information-Theoretic View on Wireless Channel Capacity
- 9. Time and frequency in wireless communications
- 10. Space in wireless communications
- 11. Using Two, More, or a Massive Number of Antennas
- 12. Wireless Beyond a Link: Connections and Networks

Basic tradeoff in a shared communication medium

- It offers an advantage when the same information needs to be broadcasted to multiple receiving devices
- When these devices become transmitters, we need to mitigate interference

What will be learned in this chapter

- Specify a simple model for actors that share a communication medium
- Tackling the problems of "who talks first" and rendezvous
- How the assumption of half-duplex vs. full-duplex operation changes the design of a communication protocol
- Making a basic time-sharing communication protocol and illustrating the gap with the real-life operation
- A bit of advanced time-sharing: reservation and dynamic allocation

Making a simple wireless model

Shared channel and its characteristics Sound waves and air analogy Properties:

- Half/full duplex
- Broadcast
- Interference

Other assumptions

Omnidirectional transmission and reception

A simple collision model

Special (pessimistic) case of fully destructive interference

Successful transmission requires:

- Communicating devices need to be within a communication range
- No other simultaneous communication in receiver's range (zero tolerance to interference)
- If half-duplex: a receiver must be in a "listening state"

Wireless vs. wired

Wireless medium

- ✓ Flexibility to establish new connections
- ✓ High resource utilization
- X Coordination is required to avoid interference
- ✓ Natural broadcast capability
- X Extra mechanisms are required for security

Wired medium

- X New connections require new dedicated physical resources
- X Low resource utilization
- No coordination is required, each user has its own medium
- X Broadcast is expensive
- ✓ Has in a way "embedded" security

Broadcast and interference

The first contact (1)

Who speaks first?

Ideally, some hierarchy is in place and the higher tier entity initiates communication

But what if more than one high tier entity is present?

Randomize the transmission of invites!

The first contact (2)

Rendezvous without coordination

Devices that have not yet started communication are not synchronized

This reduces the chance of collision, as *Invites* help Zoya adjust her clock

Note that "who speaks first?" is not a problem with full-duplex

Wireless Connectivity: An Intuitive and Fundamental Guide Chapter 1: An Easy Introduction to the Shared Wireless Medium

11

Multiple access with centralized control

The base station splits the resources when multiple users are involved

Time Division Multiple Access (TDMA): The entire communication medium is assigned to one user for a fraction of time; based on **frames** and **slots**

- ✓ Perfect for periodic traffic
- ✓ Little signaling is required
- ✓ Users can go to sleep in-between
- X Inefficient if the users are inactive at their slots
- X Loss of synchronization is critical

Metrics for communication protocols

We define a *logical channel* for the users; see Zoya's in the figure

Effective data rate R_c is calculated from a nominal data rate R and slot duration T

Periodic, equal allocation

For *K* users over *F* observed frames

$$R_c = \frac{F \cdot R \cdot T}{F \cdot K \cdot T} = \frac{R}{K} \quad \text{[bps]}$$

Periodic, unequal allocation

$$R_c(T_R) = \frac{\langle \text{ data bits sent over period } T_R \rangle}{T_R} \quad \text{[bps]}$$

Signaling and metadata

These are needed to ensure a robust system operation

Adding a relatively short header at the start of the frame has numerous benefits:

- The base station can schedule the frame when needed
- Unsynchronized devices can align with the header
- A single bit can indicate uplink or downlink frame

Signaling and metadata: A simple system that (almost) works

Header types

- *H*₀₀: Link establishment frame
- *H*₀₁: Start of link termination; wait for indication from Basil
- *H*₁₀: Downlink (DL) frame
- *H*₁₁: Uplink (UL) frame

 T_{FH} : Header duration

T: Frame duration

Uplink/downlink allocation

Link establishment

Wireless Connectivity: An Intuitive and Fundamental Guide Chapter 1: An Easy Introduction to the Shared Wireless Medium

15

System in action with 3 terminals

Chapter 1: An Easy Introduction to the Shared Wireless Medium

Still not a practical system

What happens if Zoya walks out of the cell?

Basil employs a timeout mechanism

What happens if Zoya returns, unaware that Basil changed the allocation?

Simple models should be enriched and become robust to (a lot of) practical issues

Making a dynamic TDMA (1)

User activity is rarely static

Distinctive user requirements

Trade-offs between circuit switched and packet-switched operation

Circuit-switched

Packet-switched

- ✓ Minimal signaling
- X Low flexibility

- ✓ Dynamic allocation of resources
- X High overhead

Increasing signaling increases flexibility

Making a dynamic TDMA (2)

How many bits are required to allocate *K*users in a frame with *F* slots?

There are K^F ways to allocate

For a system that supports up to K_{\max} active users, the frame header must contain at least $\lceil \log_2 K^F \rceil \le F \lceil \log_2 K \rceil \le F \lceil \log_2 K_{\max} \rceil$ additional bits

Example: For MAC address $K_{\text{max}} = 2^{48}$

Making a dynamic TDMA (3)

How does Basil know how to assign resources?

DL is easy

UL is complicated...

Unless Xia's packets are perfectly predictable Basil can:

- Guess it (e.g. polling)
- Learn it (reservation)

Analogy with conference scenario (however, this assumes an additional channel for signaling)

Short control packets and reservation

How does Basil know how to assign resources?

It allows all users to send **short** reservation packets **^overhead**

Allocates users according to their requirements

Evaluating overhead

We express overhead in relation to the duration of sending one bit

Data rate for a device that uses a single slot is $\overline{R} = \frac{RT}{T_H + T_r + T_a + FT}$

- For simplicity, all transmissions are made at a nominal rate of *R* bps
- A data packet with D = RT bits
- A reservation packet with

 $r = [\log_2(F+1)]$ bits

An allocation packet with

$$a = F[\log_2 K_{\max}]$$
 bits

$$\bar{R} = \frac{R}{\frac{2+r+a}{D} + F}$$

LARGE data packets improve efficiency

Allocation in the same frame

Half-duplex vs. full-duplex TDMA

Ideal switching between transmission (TX) and reception (RX) is not the case in practice: turnaround time

Avoid frequent turnaround to increase efficiency

Gain of full duplex: lower latency

Outlook and takeaways

- Simple models for sharing the wireless channel
- Broadcasting nature of the wireless medium: interference = collisions
- We can consider the packet as an atomic unit, but can also consider variable packet sizes
- Simple, yet practical, design principles for protocols
- Flexibility vs. overhead in protocol design
- Full vs. half-duplex: latency advantages in protocols